COMMIT AND ROLLBACK STATEMENTS 1
CHILD AND ELDER ABUSE 2

COMMIT and ROLLBACK Statements
Author’s Name
Institutional Affiliation
Course Code and Name
Professor’s Name
Date
COMMIT and ROLLBACK Statements
Any transaction in a database ends with either a COMMIT or ROLLBACK statements. These commands are necessary since they show whether a transaction has occurred successfully or not. When a transaction ends in a COMMIT statement, it means that it has been successful (Elmasri & Navathe, 2016, p. 754). However, when it ROLLBACK, it means that it failed, and the data has been reverted to the way it was before the transaction was initiated.

The ROLLBACK and COMMIT statements align with the transaction property of consistency. In particular, the data stored in a database must be consistent before and after the transaction (Elmasri & Navathe, 2016, p. 757). On that note, if a person is withdrawing money using an automated teller machine (ATM) card, the value of the money should remain the same whether a transaction succeeds (COMMIT) or fails (ROLLBACK). For example, if a transaction succeeds, the sum of the money withdrew, and the current balance should be equal to the initial available balance.

The four primary concurrency problems include dirty read, phantom read, lost update, and unrepeatable read. The dirty read problem occurs when an uncommitted transaction triggers actions that cannot be rolled back, which lead to database inconsistency (Elmasri & Navathe, 2016, p. 750). For example, it can happen if an individual withdraws money from an ATM when there is no cash to dispense. An unrepeatable read problem happens when a transaction reads unrepeated. For instance, it is like withdrawing $100, but due to the increase of withdrawing fees, the amount deducted reads $109. Additionally, the lost update problem occurs when multiple transactions are executed concurrently, and some of the updates are lost. For instance, it can happen when an individual uses two or more ATM cards to withdraw $100 from the same account simultaneously. In this case, some transactions might not be updated, leading to database inconsistency. The phantom read problem occurs when a transaction updates a variable from the buffer and fails to get that variable later. For example, a good example would be withdrawing $50 using an ATM card, and after the transaction occurs successfully, the value withdrew is not recorded since it was deleted at some point during the data processing.

Reference

Elmasri, R., & Navathe, S. B. (2016). Fundamentals of Database Systems (7th ed.). Boston, MA: Pearson.

